TECTONIC EQUILIBRIUM

Introduction to a "Stochastic" Global Seismic Distribution Model

Charl E Janeke (PE), Kartago Inc, Los Angeles California (USA)

SuDBE2011 Sustainable Development in Building and Environment Chongqing, China October 2011

Earthquakes are the result of pressure surges and consequential fractures of the rust of the earth emanating form the interaction of tectonic plates as a consequence of continental drift.

The most severe global disasters are the consequence of earthquakes.

Earthquakes are the result of pressure surges and consequential fractures of the rust of the earth emanating form the interaction of tectonic plates as a consequence of continental drift.

The most severe global disasters are the consequence of earthquakes.

Earthquakes generate three types of seismic waves.

Primary "P" (high frequency) waves propagate at 20,000mph.

Secondary "S" waves are absorbed and attenuated in the molten core of the earth.

Tertiary "L" (low frequency) waves propagate on the surface and is highly destructive due to the amplitude and energy content and displacement surge.

In accordance with the SuDBE2009 "Polar Equilibrium" analysis, rapid chilling resulted in the "1st Harmonic of Formation" 3.5-4B years after formation that fractured the mantle of the earth due to stress concentrations.

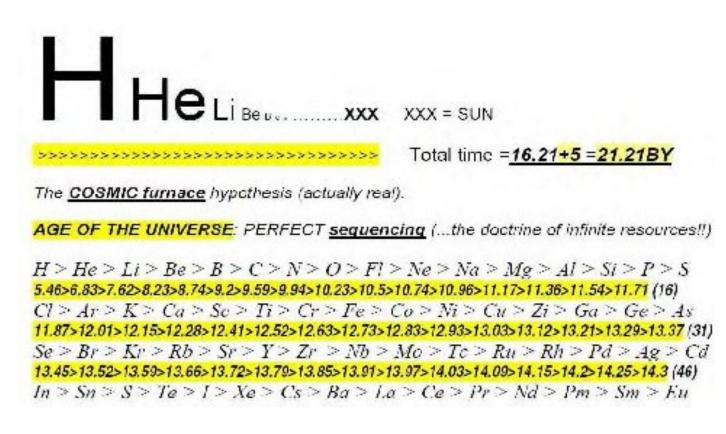
The fractured mantle resulted in continental drift that spawned an era of intense volcanic activity breaking the the deep freeze that was settling onto the incipient earth at the time.

Rapid surface temperature regression ...3.4B year old fossils ...119F/44C

37 0.83	124	197	0.0115	2	173.72	612	1262	1881	2462	3040
38 0.85	121	197	0.0111	2	180.48	609	1245	1854	2447	3040
39 0.87	119	197	0.0107	2	187.35	605	1230	1838	2439	3040
40 0.90	116	197	0.0103	2	<u>194.32</u>	602	1220	1830	2435	3040
41 0.92	114	197	0.0099	2	201.39	599	1215	1825	2432	3040
42 0.94	112	197	0.0096	2	208.58	597	1211	1821	2431	3040
43 <u>0.97</u>	110	197	0.0093	2	215.87	594	1208	1819	2430	3040
44 <u>0.99</u>	108	197	0.0090	2	223.28	591	1205	1817	2429	3040
45 1.01	106	197	0.0087	2	230.80	589	1203	1816	2428	3040
46 1.04	104	197	0.0084	2	238.44	586	1201	1814	2427	3040
47 1.06	102	197	0.0081	2	246.19	584	1199	1813	2427	3040
48 1.08	101	197	0.0079	2	254.07	582	1197	1812	2426	3040
49 1.10	99	197	0.0076	2	262.06	579	1196	1811	2425	3040
50 1.13	97	197	0.0074	2	270.18	577	1194	1810	2425	2914
51 <u>1.15</u>	96	197	0.0072	2	278.42	575	1192	1809	2361	2848
http://ww	w.pola	areq	<u>uilibrium</u>	. <u></u>	m/pdfs/F	PEQ.I	<u> Macr</u>	<u>o295</u>	Sep09	9.pdf

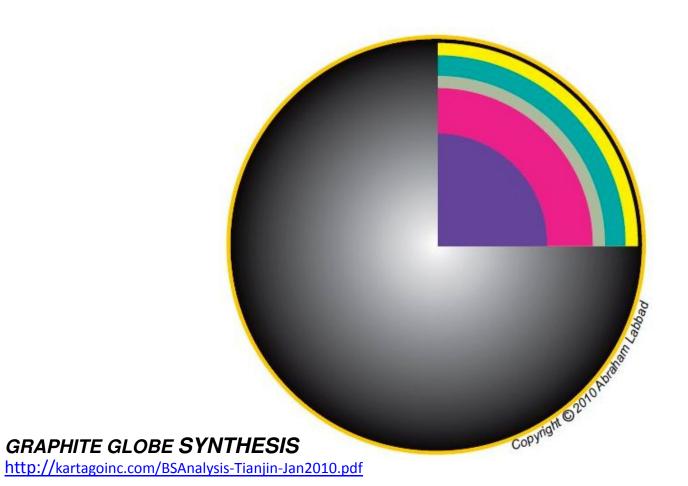
8/24/2011 Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com

"A microbial bacteria fossil discovered in Australian may be proof of life on Earth before oxygen 3.4 billion years ago" ...Strelley Pool Formation in Western Australia (Aug/22 2011).


Stromatolies are structures that are formed in shallow water (temperature stamp =119F) through the trapping, binding, and cementing sedimentary grains using biofilms and microorganisms.

http://www.ibtimes.com/articles/202030/20110822/oldest-fossils-on-earth-life-on-mars.htm

According to the cosmic furnace analysis the earth comprised 5% carbon at formation.


The consequence is that 50% of the carbon equates to a 50-100 mile graphite layer 50-100 miles below the surface.

With u=0.05 at 800F, the friction coefficient of graphite matches the superposition (viz. vector sum) of the spin and spatial surface vectors.

Age of the universe: The cosmic furnace synthesis http://kartagoinc.com/BSAnalysis-Tianjin-Jan2010.pdf

8/24/2011 Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com

8/24/2011 Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com

We need to understand the thermodynamics of formation of the crust of the earth, global harmonics and the dynamics of seismic events.

SuDBE2009 "Polar Equilibrium" was directed at a consequential global heat balance.

SuDBE2011 conversely focuses on a global tectonic (equilibrium) model and the associated plate dynamics.

8/24/2011

As a consequence of the Graphite Globe analysis, centripetal acceleration is being considered as the principal seismic motive force.

The oblique/tilted orbit of the earth around the sun exercise a profound impact on the continental plate dynamics and consequential harmonic seismic stress propagation.

The presentation is focused at the elements of a seismic prediction model comprising;

(1) a *Centripetal* vector disturbance model
(2) a *Random walk* simulation model and
(3) a *Stochastic gain* prediction model.

The concept can be better understood by means of an automobile analogy whereby the auto is driven via an <u>engine</u> +<u>transmission</u> +<u>steering</u>.

8/24/2011

In the abstract centripetal acceleration [Ac] may in the abstract be presented as;

Ac = lim (d >0) dVt/dt = W^2xR = Vt^2/R

where Ac = centripetal acceleration in ft/sec2, W = angular velocity/rotation in radians/sec, Vt = tangential velocity in ft/sec and R = radius of the focal point in ft.

The centripetal acceleration of the <u>earth</u> may be equated as follows;

(1) Re = 6,378 km = 6,378 x 1,000 x 3.3 = 21,047,400 ft

(2) We = (2xPi) / (24x60x60) = 7.275 x 10^-5 Radians/sec

(3) Ae = (7.275x10^-5)^2 x 21,047,400 = 0.1114 ft/sec2

The centripetal acceleration of the <u>earth</u> may be equated as follows;

At 90deg latitude; $Ae.90 = Ae \times \sin(90deg) = 0.1114 \text{ ft/sec}$ At 60deg latitude; $Ae.60 = Ae \times \sin(60deg) = 0.0965 \text{ ft/sec}$ At 45deg latitude; $Ae.45 = Ae \times \sin(45deg) = 0.0788 \text{ ft/sec}$ At 30deg latitude; $Ae.30 = Ae \times \sin(30deg) = 0.0557 \text{ ft/sec}$ At 00deg latitude; $Ae.00 = Ae \times \sin(00deg) = 0.0000 \text{ ft/sec}$

The *surface* centripetal vector may be equated as follows;

At 90deg latitude; $Aes.90 = Ae.90 \times \cos(90deg) = 0.0000$ ft/sec At 60deg latitude; $Aes.60 = Ae.60 \times \cos(60deg) = 0.0079$ ft/sec At 45deg latitude; $Aes.45 = Ae.45 \times \cos(45deg) = 0.0091$ ft/sec At 30deg latitude; $Aes.30 = Ae.30 \times \cos(30deg) = 0.0079$ ft/sec At 00deg latitude; $Aes.00 = Ae.00 \times \cos(00deg) = 0.0000$ ft/sec

The <u>spatial</u> centripetal acceleration of the sun may be equated as;

(1) Rs = 140M km = 140M x 1000 x 3.3 = 4.62x10^11 ft

(2) Ws = (2xPi) / (8,800x60x60) = 1.984 x 10^-7 Radians/sec

(3) As = (1.984 x 10^-7)^2 x 4.62x10^10 = 0.0182 ft/sec2

18

The **Random** walk OR **Markov** chain will hence become an the primary computational tool as to;

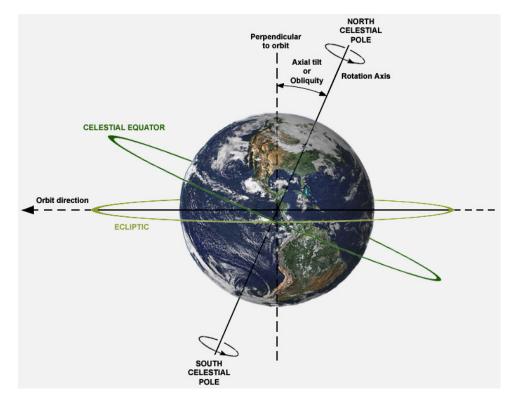
(1) Movement/displacement of the continental plates

(2) Stress as a consequence of tectonic interaction

as driven by the centripetal reaction vector emanating from the earth's rotational spin, the spatial trajectory around the sun and the tilt/inversion of the axis of the earth towards the sun.

The <u>superposition</u> OR gross tectonic impact vector is determined as the vector sum of the rotational and spatial vectors for <u>both</u> "inner" and "outer" orbits.

INNER Orbit;


At 90deg ratio = $Aes/As = Ae.90 \times \cos(90deg) + 0.0182 \times \sin(90) = 0.018$ At 80deg ratio = $Aes/As = Ae.80 \times \cos(80deg) + 0.0182 \times \sin(80) = 0.037$ At 70deg ratio = $Aes/As = Ae.70 \times \cos(70deg) + 0.0182 \times \sin(70) = 0.053$ At 60deg ratio = $Aes/As = Ae.60 \times \cos(60deg) + 0.0182 \times \sin(60) = 0.064$ At 45deg ratio = $Aes/As = Ae.45 \times \cos(45deg) + 0.0182 \times \sin(45) = 0.068$ At 30deg ratio = $Aes/Ac = Ae.30 \times \cos(30deg) + 0.0182 \times \sin(30) = 0.057$ At 20deg ratio = $Aes/As = Ae.20 \times \cos(20deg) + 0.0182 \times \sin(20) = 0.042$ At 10deg ratio = $Aes/As = Ae.10 \times \cos(10deg) + 0.0182 \times \sin(10) = 0.022$ At 00deg ratio = $Aes/Ac = Ae.00 \times \cos(00deg) + 0.0182 \times \sin(00) = 0.000$

SUPERPOSITION VECTOR

OUTER Orbit;

At 90deg ratio = $Aes/As = Ae.90 \times \cos(90deg) - 0.0182 \times \sin(90) = -0.018$ At 80deg ratio = $Aes/As = Ae.80 \times \cos(80deg) - 0.0182 \times \sin(80) = -0.001$ At 70deg ratio = $Aes/As = Ae.70 \times \cos(70deg) - 0.0182 \times \sin(70) = 0.019$ At 60deg ratio = $Aes/As = Ae.60 \times \cos(60deg) - 0.0182 \times \sin(60) = 0.032$ At 45deg ratio = $Aes/As = Ae.45 \times \cos(45deg) - 0.0182 \times \sin(45) = 0.043$ At 30deg ratio = $Aes/Ac = Ae.30 \times \cos(30deg) - 0.0182 \times \sin(30) = 0.039$ At 20deg ratio = $Aes/As = Ae.20 \times \cos(20deg) - 0.0182 \times \sin(20) = 0.029$ At 10deg ratio = $Aes/As = Ae.10 \times \cos(10deg) - 0.0182 \times \sin(10) = 0.016$. At 00deg ratio = $Aes/Ac = Ae.00 \times \cos(00deg) - 0.0182 \times \sin(00) = 0.000$

21

TILT INVERSION: The impact of tilt is twofold as a consequence of seasonal inversion of the planetary trajectory of the earth around the sun.

Random walk: Random walk is driven by random disturbances. Random walk has no beginning or an end. There is also no relationship between the initial and the terminal state of a Random walk process.

Stochastic process: In event of the (n+1) th state germane to the (n) th state, Random walk becomes a Stochastic process

Markov chain: A *Markov* chain is a random walk process whereby the (n) *th* state contains the COMPLETE history of ALL proceeding steps akin to computational DNA.

A *Markov* chain may be expressed as the probability vector {Pij};

Pij = *SUM* (*k*=1, *k*=*r*) [*Pik*.*Pkj*]

where "k" denotes the number of steps of process "Pij" from beginning "1" to state "r" with Pik and Pkj the transitional values of probability vector {Pij} at the [ij] th instant.

A tectonic plate impacted by harmonic disturbances becomes a **Markov** chain in event of (1) a rational relationship between the "n" and (n+1)" steps and (2) the infiniteness of the disturbances as a consequence of the galactic time scale of plate dynamics

24

KALMAN FILTER

The *Kalman* filter is a "stochastic" process that <u>pairs</u> recorded data and computationally predicted estimates of state as to an <u>uncertainty</u> between the measured and computationally predicted values of state and hence inverses the uncertainty into an <u>optimal gain vector</u> (the "filter" lemma).

KALMAN REQUISITES

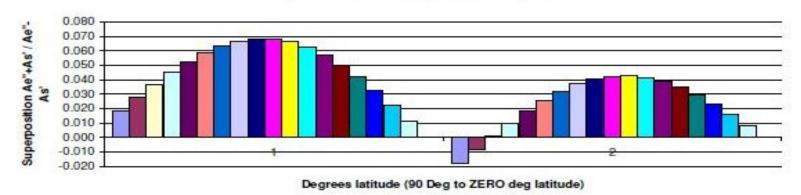
- System model: The system model is employed to equate the <u>transition</u> from state (n) to state (n+1) with the "filtered" measurements at state (n) as input.
- 2. Raw data: <u>Abundance</u> of measurements are necessary to equate the propagation of uncertainty in order to excite the filtering algorithm.

3. White noise: Properly developed measurements streams with a *Gaussian* <u>white</u> noise distribution base are therefore essential *Kalman* filter requisites.

26

ZERO Tilt Tectonic Centipetal ACCELERATION Vector

	3.142			24	8800	6350		<u>1.4E+08</u>	<u>2Pi</u>			2Pi			
Deg	<u>Pi</u>	Cos	Sin	We	Ws	Re	Re'	Rs	Ae	Ae'	Ae"	As	As'		
90	1.571	0.000	1.000	7.27E-05	1.98E-07	2.10E+07	2.10E+07	4.62E+11	0.111	0.111	0.000	0.018	0.018	0.018	-0.018
85	1.484	0.087	0.996	7.27E-05	1.98E-07	2.10E+07	2.09E+07	4.62E+11	0.111	0.110	0.010	0.018	0.018	0.028	-0.009
80	1.396	0.173	0.985	7.27E-05	1.98E-07	2.10E+07	2.06E+07	4.62E+11	0.111	0.109	0.019	0.018	0.018	0.037	0.001
75	1.309	0.259	0.966	7.27E-05	1.98E-07	2.10E+07	2.02E+07	4.62E+11	0.111	0.107	0.028	0.018	0.018	0.045	0.010
70	1.222	0.342	0.940	7.27E-05	1.98E-07	2.10E+07	1.97E+07	4.62E+11	0.111	0.104	0.036	0.018	0.017	0.053	0.019
65	1.135	0.422	0.906	7.27E-05	1.98E-07	2.10E+07	1.90E+07	4.62E+11	0.111	0.100	0.042	0.018	0.016	0.059	0.026
60	1.047	0.500	0.866	7.27E-05	1.98E-07	2.10E+07	1.81E+07	4.62E+11	0.111	0.096	0.048	0.018	0.016	0.064	0.032
55	0.960	0.573	0.819	7.27E-05	1.98E-07	2.10E+07	1.72E+07	4.62E+11	0.111	0.091	0.052	0.018	0.015	0.067	0.037
50	0.873	0.643	0.766	7.27E-05	1.98E-07	2.10E+07	1.61E+07	4.62E+11	0.111	0.085	0.055	0.018	0.014	0.069	0.041
45	0.786	0.707	0.707	7.27E-05	1.98E-07	2.10E+07	1.48E+07	4.62E+11	0.111	0.078	0.055	0.018	0.013	0.068	0.043
40	0.698	0.766	0.643	7.27E-05	1.98E-07	2.10E+07	1.35E+07	4.62E+11	0.111	0.071	0.055	0.018	0.012	0.066	0.043
35	0.611	0.819	0.574	7.27E-05	1.98E-07	2.10E+07	1.20E+07	4.62E+11	0.111	0.064	0.052	0.018	0.010	0.063	0.042
30	0.524	0.866	0.500	7.27E-05	1.98E-07	2.10E+07	1.05E+07	4.62E+11	0.111	0.055	0.048	0.018	0.009	0.057	0.039
25	0.436	0.906	0.423	7.27E-05	1.98E-07	2.10E+07	8.86E+06	4.62E+11	0.111	0.047	0.042	0.018	0.008	0.050	0.035
20	0.349	0.940	0.342	7.27E-05	1.98E-07	2.10E+07	7.17E+06	4.62E+11	0.111	0.038	0.036	0.018	0.006	0.042	0.029
15	0.262	0.966	0.259	7.27E-05	1.98E-07	2.10E+07	5.42E+06	4.62E+11	0.111	0.029	0.028	0.018	0.005	0.032	0.023
10	0.175	0.985	0.174	7.27E-05	1.98E-07	2.10E+07	3.64E+06	4.62E+11	0.111	0.019	0.019	0.018	0.003	0.022	0.016
5	0.087	0.996	0.087	7.27E-05	1.98E-07	2.10E+07	1.83E+06	4.62E+11	0.111	0.010	0.010	0.018	0.002	0.011	0.008
0	0.000	1.000	0.000	7.27E-05	1.98E-07	2.10E+07	0.00E+00	4.62E+11	0.111	0.000	0.000	0.018	0.000	0.000	0.000

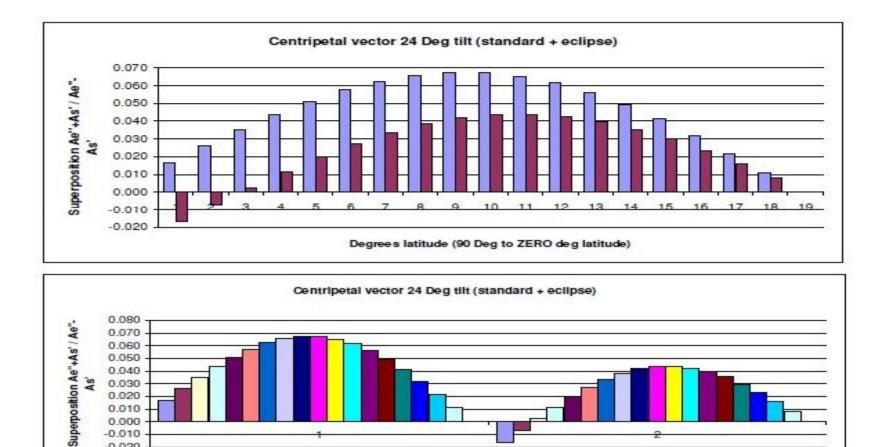

8/24/2011 Copyright Res

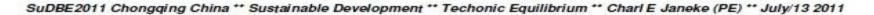
Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com

Nev of the solution of the sol

Centripetal vector ZERO tilt (standard + eclipse)

8/24/2011 Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com


24 Deg Tilt Tectonic Centipetal ACCELERATION Vector


0.1.40 04 0000 0000 4.45.00 000	0.001	
<u>3.142</u> <u>24 8800 6350 <u>1.4E+08</u> <u>2Pi</u></u>	<u>2Pi</u>	24.00
Deg Pi Cos Sin We Ws Re Re' Rs Ae Ae'	<u>Ae" As</u>	As'
90 1.571 0.000 1.000 7.27E-05 1.98E-07 2.10E+07 2.10E+07 4.62E+11 0.111 0.111	0.000 0.018	0.017 0.017 -0.017
85 1.484 0.087 0.996 7.27E-05 1.98E-07 2.10E+07 2.09E+07 4.62E+11 0.111 0.110	0.010 0.018	0.017 0.026 -0.007
80 1.396 0.173 0.985 7.27E-05 1.98E-07 2.10E+07 2.06E+07 4.62E+11 0.111 0.109	0.019 0.018	0.016 0.035 0.003
75 1.309 0.259 0.966 7.27E-05 1.98E-07 2.10E+07 2.02E+07 4.62E+11 0.111 0.107	0.028 0.018	0.016 0.044 0.012
70 1.222 0.342 0.940 7.27E-05 1.98E-07 2.10E+07 1.97E+07 4.62E+11 0.111 0.104	0.036 0.018	0.016 0.051 0.020
65 1.135 0.422 0.906 7.27E-05 1.98E-07 2.10E+07 1.90E+07 4.62E+11 0.111 0.100	0.042 0.018	0.015 0.057 0.027
60 1.047 0.500 0.866 7.27E-05 1.98E-07 2.10E+07 1.81E+07 4.62E+11 0.111 0.096	0.048 0.018	0.014 0.062 0.034
55 0.960 0.573 0.819 7.27E-05 1.98E-07 2.10E+07 1.72E+07 4.62E+11 0.111 0.091	0.052 0.018	0.014 0.066 0.038
50 0.873 0.643 0.766 7.27E-05 1.98E-07 2.10E+07 1.61E+07 4.62E+11 0.111 0.085	0.055 0.018	0.013 0.067 0.042
45 0.786 0.707 0.707 7.27E-05 1.98E-07 2.10E+07 1.48E+07 4.62E+11 0.111 0.078	0.055 0.018	0.012 0.067 0.044
40 0.698 0.766 0.643 7.27E-05 1.98E-07 2.10E+07 1.35E+07 4.62E+11 0.111 0.071	0.055 0.018	0.011 0.065 0.044
35 0.611 0.819 0.574 7.27E-05 1.98E-07 2.10E+07 1.20E+07 4.62E+11 0.111 0.064	0.052 0.018	0.010 0.062 0.043
30 0.524 0.866 0.500 7.27E-05 1.98E-07 2.10E+07 1.05E+07 4.62E+11 0.111 0.055	0.048 0.018	0.008 0.056 0.040
25 0.436 0.906 0.423 7.27E-05 1.98E-07 2.10E+07 8.86E+06 4.62E+11 0.111 0.047	0.042 0.018	0.007 0.049 0.035
20 0.349 0.940 0.342 7.27E-05 1.98E-07 2.10E+07 7.17E+06 4.62E+11 0.111 0.038	0.036 0.018	0.006 0.041 0.030
15 0.262 0.966 0.259 7.27E-05 1.98E-07 2.10E+07 5.42E+06 4.62E+11 0.111 0.029	0.028 0.018	0.004 0.032 0.023
10 0.175 0.985 0.174 7.27E-05 1.98E-07 2.10E+07 3.64E+06 4.62E+11 0.111 0.019	0.019 0.018	0.003 0.022 0.016
5 0.087 0.996 0.087 7.27E-05 1.98E-07 2.10E+07 1.83E+06 4.62E+11 0.111 0.010	0.010 0.018	0.001 0.011 0.008
0 0.000 1.000 0.000 7.27E-05 1.98E-07 2.10E+07 0.00E+00 4.62E+11 0.111 0.000	0.000 0.018	0.000 0.000 0.000

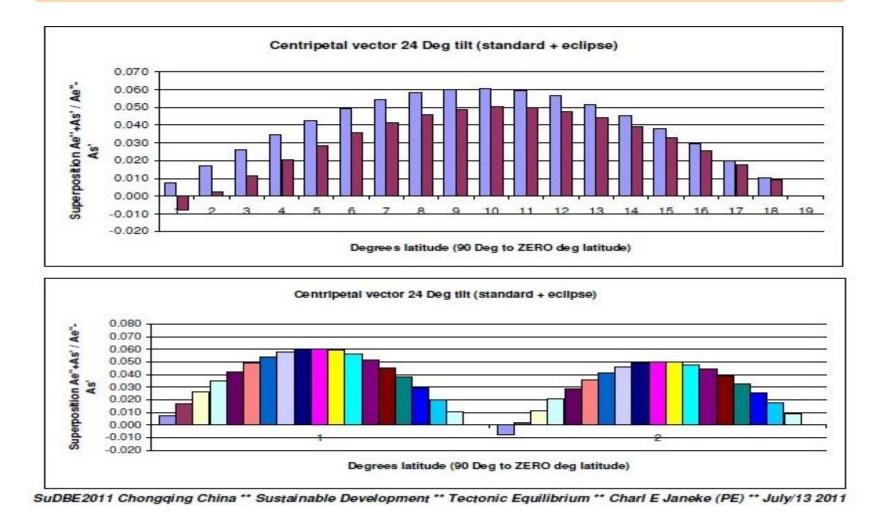
8/24/2011

Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com

012

Degrees latitude (90 Deg to ZERO deg latitude)

0.030 0.020 0.010 0.000 -0.010 -0.020


Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com 8/24/2011 30

66 Deg Tilt Tectonic Centipetal ACCELERATION Vector

														1.15		
		3.142			24	8800	6350		1.4E+08	<u>2Pi</u>			<u>2Pi</u>	66.00		
D	eg	Pi	Cos	Sin	We	Ws	Re	Re'	Rs	Ae	Ae'	Ae"	As	As'	8	50
12	90	1.571	0.000	1.000	7.27E-05	1.98E-07	2.10E+07	2.10E+07	4.62E+11	0.111	0.111	0.000	0.018	0.007	0.007	-0.007
	85	1.484	0.087	0.996	7.27E-05	1.98E-07	2.10E+07	2.09E+07	4.62E+11	0.111	0.110	0.010	0.018	0.007	0.017	0.002
	80	1.396	0.173	0.985	7.27E-05	1.98E-07	2.10E+07	2.06E+07	4.62E+11	0.111	0.109	0.019	0.018	0.007	0.026	0.012
	75	1.309	0.259	0.966	7.27E-05	1.98E-07	2.10E+07	2.02E+07	4.62E+11	0.111	0.107	0.028	0.018	0.007	0.035	0.021
	70	1.222	0.342	0.940	7.27E-05	1.98E-07	2.10E+07	1.97E+07	4.62E+11	0.111	0.104	0.036	0.018	0.007	0.043	0.029
	65	1.135	0.422	0.906	7.27E-05	1.98E-07	2.10E+07	1.90E+07	4.62E+11	0.111	0.100	0.042	0.018	0.007	0.049	0.036
	60	1.047	0.500	0.866	7.27E-05	1.98E-07	2.10E+07	1.81E+07	4.62E+11	0.111	0.096	0.048	0.018	0.006	0.054	0.042
	55	0.960	0.573	0.819	7.27E-05	1.98E-07	2.10E+07	1.72E+07	4.62E+11	0.111	0.091	0.052	0.018	0.006	0.058	0.046
	50	0.873	0.643	0.766	7.27E-05	1.98E-07	2.10E+07	1.61E+07	4.62E+11	0.111	0.085	0.055	0.018	0.006	0.060	0.049
	45	0.786	0.707	0.707	7.27E-05	1.98E-07	2.10E+07	1.48E+07	4.62E+11	0.111	0.078	0.055	0.018	0.005	0.061	0.050
	40	0.698	0.766	0.643	7.27E-05	1.98E-07	2.10E+07	1.35E+07	4.62E+11	0.111	0.071	0.055	0.018	0.005	0.059	0.050
	35	0.611	0.819	0.574	7.27E-05	1.98E-07	2.10E+07	1.20E+07	4.62E+11	0.111	0.064	0.052	0.018	0.004	0.056	0.048
	30	0.524	0.866	0.500	7.27E-05	1.98E-07	2.10E+07	1.05E+07	4.62E+11	0.111	0.055	0.048	0.018	0.004	0.052	0.044
	25	0.436	0.906	0.423	7.27E-05	1.98E-07	2.10E+07	8.86E+06	4.62E+11	0.111	0.047	0.042	0.018	0.003	0.046	0.039
	20	0.349	0.940	0.342	7.27E-05	1.98E-07	2.10E+07	7.17E+06	4.62E+11	0.111	0.038	0.036	0.018	0.003	0.038	0.033
	15	0.262	0.966	0.259	7.27E-05	1.98E-07	2.10E+07	5.42E+06	4.62E+11	0.111	0.029	0.028	0.018	0.002	0.030	0.026
	10	0.175	0.985	0.174	7.27E-05	1.98E-07	2.10E+07	3.64E+06	4.62E+11	0.111	0.019	0.019	0.018	0.001	0.020	0.018
	5	0.087	0.996	0.087	7.27E-05	1.98E-07	2.10E+07	1.83E+06	4.62E+11	0.111	0.010	0.010	0.018	0.001	0.010	0.009
1	0	0.000	1.000	0.000	7.27E-05	1.98E-07	2.10E+07	0.00E+00	4.62E+11	0.111	0.000	0.000	0.018	0.000	0.000	0.000

8/24/2011

1 15

8/24/2011 Copyright Reserved, Kartago Inc www.kartagoinc.com, Los Angeles, CA/USA info@kartagoinc.com 32

<u>SUMMARY</u>

Predicting OR understanding the forces of nature generally and tectonic equilibrium specifically has been an elusive quest to date.

The analysis therefore serves the purpose of developing a large scale (global) tectonic model on the foundation of (1) a global *Centripetal* reaction model (2) a global *Random* walk model and (3) a *Kalman* filter model.

This presentation hence serves as an invitation to participate with the development of a global tectonic model based on the underlying Centripetal, Randomwalk and Kalman filter systems as illustrated.